A method and system provide for temporal fusion of depth maps in an image space representation. A series of depth maps are obtained/acquired from one or more depth sensors at a first time. A first Gaussian mixture model (GMM) is initialized using one of the series of depth maps. A second depth map is obtained from the depth sensors at a second time. An estimate of the motion of the depth sensors, from the first time to the second time, is received. A predictive GMM at the second time is created based on a transform of the first GMM and the estimate of the motion. The predictive GMM is updated based on the second depth map.


    Access

    Download


    Export, share and cite



    Title :

    GAUSSIAN MIXTURE MODELS FOR TEMPORAL DEPTH FUSION


    Contributors:

    Publication date :

    2018-11-08


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06T Bilddatenverarbeitung oder Bilddatenerzeugung allgemein , IMAGE DATA PROCESSING OR GENERATION, IN GENERAL / G06V / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Gaussian mixture models for temporal depth fusion

    MATTHIES LARRY H / CIGLA CEVAHIR | European Patent Office | 2022

    Free access

    Probabilistic trajectory prediction with Gaussian mixture models

    Wiest, Jurgen / Hoffken, Matthias / Kresel, Ulrich et al. | IEEE | 2012


    Probabilistic Trajectory Prediction with Gaussian Mixture Models

    Wiest, J. / Hoffken, M. / Kressel, U. et al. | British Library Conference Proceedings | 2012


    Gaussian Mixture Models for Parking Demand Data

    Fiez, Tanner / Ratliff, Lillian J. | IEEE | 2020


    Revisiting Gaussian Mixture Models for Driver Identification

    Jafatnejad, Sasan / Castignani, German / Engel, Thomas | IEEE | 2018