The present disclosure describes systems and methods that include calculating, via a reinforcement learning agent (RLA) controller, a plurality of state-action values based on sensor data representing an observed state, wherein the RLA controller utilizes a deep neural network (DNN) and generating, via a fuzzy controller, a plurality of linear models mapping the plurality of state-action values to the sensor data.
Interpreting data of reinforcement learning agent controller
2023-01-24
Patent
Electronic Resource
English
IPC: | B60T Bremsanlagen für Fahrzeuge oder Teile davon , VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06V |
INTERPRETING DATA OF REINFORCEMENT LEARNING AGENT CONTROLLER
European Patent Office | 2020
|Autonomous Air Traffic Controller: A Deep Multi-Agent Reinforcement Learning Approach
ArXiv | 2019
|Improve PID controller through reinforcement learning
IEEE | 2018
|