System, methods, and other embodiments described herein relate to training a depth model for joint depth completion and prediction. In one arrangement, a method includes generating depth features from sparse depth data according to a sparse auxiliary network (SAN) of a depth model. The method includes generating a first depth map from a monocular image and a second depth map from the monocular image and the depth features using the depth model. The method includes generating a depth loss from the second depth map and the sparse depth data and an image loss from the first depth map and the sparse depth data. The method includes updating the depth model including the SAN using the depth loss and the image loss.
Training of joint depth prediction and completion
2023-01-17
Patent
Electronic Resource
English
IPC: | G06T Bilddatenverarbeitung oder Bilddatenerzeugung allgemein , IMAGE DATA PROCESSING OR GENERATION, IN GENERAL / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G01B MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS , Messen der Länge, der Dicke oder ähnlicher linearer Abmessungen / G01C Messen von Entfernungen, Höhen, Neigungen oder Richtungen , MEASURING DISTANCES, LEVELS OR BEARINGS / G01S RADIO DIRECTION-FINDING , Funkpeilung / G06V |
Network architecture for the joint learning of monocular depth prediction and completion
European Patent Office | 2023
|NETWORK ARCHITECTURE FOR THE JOINT LEARNING OF MONOCULAR DEPTH PREDICTION AND COMPLETION
European Patent Office | 2022
|Deterministic Guided LiDAR Depth Map Completion
IEEE | 2021
|