A system for generating a model-free reinforcement learning policy may include a processor, a memory, and a simulator. The simulator may be implemented via the processor and the memory. The simulator may generate a simulated traffic scenario including two or more lanes, an ego-vehicle, a dead end position, and one or more traffic participants. The dead end position may be a position by which a lane change for the ego-vehicle may be desired. The simulated traffic scenario may be associated with an occupancy map, a relative velocity map, a relative displacement map, and a relative heading map at each time step within the simulated traffic scenario. The simulator may model the ego-vehicle and one or more of the traffic participants using a kinematic bicycle model. The simulator may build a policy based on the simulated traffic scenario using an actor-critic network. The policy may be implemented on an autonomous vehicle.


    Access

    Download


    Export, share and cite



    Title :

    Model-free reinforcement learning


    Contributors:

    Publication date :

    2022-10-11


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES , Systeme zum Steuern oder Regeln nichtelektrischer veränderlicher Größen



    MODEL-FREE REINFORCEMENT LEARNING

    SAXENA DHRUV MAURIA / BAE SANGJAE / NAKHAEI SARVEDANI ALIREZA et al. | European Patent Office | 2021

    Free access


    Driving in Dense Traffic with Model-Free Reinforcement Learning

    Saxena, Dhruv Mauria / Bae, Sangjae / Nakhaei, Alireza et al. | ArXiv | 2019

    Free access

    Model-free Deep Reinforcement Learning for Urban Autonomous Driving

    Chen, Jianyu / Yuan, Bodi / Tomizuka, Masayoshi | IEEE | 2019


    Airport Runway Configuration Management with Offline Model-Free Reinforcement Learning

    Memarzadeh, Milad / Puranik, Tejas G. / Kalyanam, Krishna M. et al. | TIBKAT | 2023