Alternatively, or additionally, a computing system generates an indication of a selected outcome according to the reinforcement learning model and sends a selection output to the second environment (e.g., a second traffic intersection with more lanes than the first traffic intersection) to implement the selected action in the second environment.


    Access

    Download


    Export, share and cite



    Title :

    Universal attention-based reinforcement learning model for control systems



    Publication date :

    2021-08-03


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS




    Universal Quantum Control through Deep Reinforcement Learning

    Niu, Murphy Yuezhen / Boixo, Sergio / Smelyanskiy, Vadim N. et al. | AIAA | 2019


    Universal Quantum Control through Deep Reinforcement Learning

    Niu, Murphy Yuezhen / Boixo, Sergio / Smelyanskiy, Vadim N. et al. | TIBKAT | 2019


    Deep reinforcement learning traffic signal control method based on attention mechanism

    WU JIANGUANG / ZHOU SHUYA / HOU XIANGDONG et al. | European Patent Office | 2024

    Free access