A cylindrically-shaped hybrid rocket engine solid fuel grain defines an axial combustion port. A fuel grain material comprises a compounded blend of thermoplastic fuel and aluminum. The fuel grain comprises fused stack layers, each layer comprising a plurality of fused abutting concentric beaded structures arrayed to define the combustion port; the port exhibits a rifling pattern or rifling inducing geometry along the port wall. When an oxidizer is introduced into the combustion port combustion occurs along the exposed port wall. Each beaded structure defines a geometry that increases the combustion surface area while inducing a vortex flow of oxidizer and fuel gas. As each layer ablates, an abutting layer exhibiting a similar geometry, is revealed, undergoes a gas phase change, and ablates. This process repeats and persists until oxidizer flow is terminated or the fuel grain material is exhausted. The fuel grain may be manufactured by an additive manufacturing process.
Persistent vortex generating high regression rate solid fuel grain for a hybrid rocket engine
2019-06-04
Patent
Electronic Resource
English
IPC: | F02K JET-PROPULSION PLANTS , Strahltriebwerke / B33Y ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING , Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern / B64G Raumfahrt , COSMONAUTICS / C06B EXPLOSIVE OR THERMIC COMPOSITIONS , Sprengstoffe oder thermische Gemische |
Persistent vortex generating high regression rate solid fuel grain for a hybrid rocket engine
European Patent Office | 2024
|