The present invention relates to a weight-based artificial intelligence learning system for detecting a dangerous object on a road surface which improves the performance of a learning model by assigning weights. The weight-based artificial intelligence learning system for detecting a dangerous object on a road surface comprises: an image acquisition unit (110) using a camera, GPS, a gyro sensor, etc. embedded in an ordinary smartphone (100) to provide a driver with a black box function for a vehicle and acquire a road surface image; an intelligent network selection unit (131) including an image preprocessing unit (120) detecting a real-time dangerous factor in the image to preprocess the real-time dangerous factor into a priority transmission target group and a general transmission target group and an image transmission unit (130) transmitting an image, wherein the image transmission unit (130) recognizes a crossroad and a temporary standby state to intelligently select a public network (free public network), a private Wi-Fi network (generally free), and a mobile network (generally a paid network) of a user; a priority transmission unit (132) transmitting a target processed by the image preprocessing unit and classified as a priority transmission target group first; a general transmission unit (133) managing and transmitting a large quantity of generation transmission target groups in a situation in which targets processed by the image preprocessing unit and classified as general transmission target groups are intelligently recognized as an office or home; and an integrated control center (500) consisting of a system displaying all the processed information to easily identify a variety of information in accordance with authorities such as a highest manager, a city manager, a manager, and a repair manager.

    본 발명은 도로 노면 위험물 탐지를 위한 가중치 기반 인공지능 학습 시스템에 관한 것으로서, 일반적인 스마트폰(100)에 내장된 카메라, GPS, 자이로센서 등을 활용하여, 운전자에게 차량용 블랙박스 기능을 제공하고, 도로 노면 영상을 취득하는 영상취득부(110); 상기 영상에서 실시간 위험 요인을 탐지하여, 우선전송대상군과 일반전송대상군으로 전처리하는 영상전처리부(120) 및 영상을 전송하는 영상송신부(130)를 포함하되, 상기 영상송신부(130)는 교차로 및 잠시 대기 중 상태를 인지하여, 퍼블릭 네트워크(공개 무료망)와 사설와이파이망(일반적으로 무료)와 사용자의 모바일 네트워크(일반적으로 유료망)를 지능적으로 선택하는 지능형 네트워크 선택부(131); 영상전처리부에서 처리되어 우선전송대상군으로 분류된 대상을 우선전송하는 우선전송부(132); 영상전처리부에서 처리되어 일반전송대상군으로 분류된 대상을 집 또는 사무실로 지능적으로 인지된 상황에서 대량의 일반전송대상군을 관리하며 전송하는 일반전송부(133); 및 이상의 모든 처리된 정보를 최고책임자, 도시 책임자, 관리책임자, 보수 책임자 등 권한에 따른 다양한 정보를 쉽게 식별할 수 있도록 표현하는 시스템으로 구성되는 통합관제센터(500)를 포함하는 것을 특징으로 하는,


    Access

    Download


    Export, share and cite



    Title :

    AI LEARNING SYSTEM FOR FINDING DANGEROUS ROAD OBSTACLE


    Additional title:

    도로 노면 위험물 탐지를 위한 가중치 기반 인공지능 학습 시스템


    Contributors:
    NA SANG MIN (author)

    Publication date :

    2021-06-08


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Korean


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    System for Finding Dangerous Road Obstacle and Rewarding

    NA SANG MIN | European Patent Office | 2021

    Free access

    ROAD OBSTACLE IDENTIFICATION SYSTEM AND ROAD OBSTACLE IDENTIFICATION METHOD

    AWANO HIROKI | European Patent Office | 2019

    Free access

    Dangerous road section analysis method and dangerous road section analysis device

    ZHU DAWEI / ZHANG GUOQIANG | European Patent Office | 2015

    Free access

    ON-ROAD OBSTACLE DETECTING DEVICE, ON-ROAD OBSTACLE DETECTING METHOD, AND ON-ROAD OBSTACLE DETECTING PROGRAM

    OGUSHI TOSHIAKI / HORIGUCHI KENJI / YAMANAKA MASAO | European Patent Office | 2021

    Free access

    APPARATUS FOR PROVIDING DANGEROUS OBSTACLE INFORMATION FOR VEHICLE

    LEE SUNG KYUN | European Patent Office | 2016

    Free access