Disclosed are a method and system for predicting spatio-temporal perception information based on a graph neural network. The method includes the following steps: step S1: constructing a perception data monitoring network, and acquiring original perception data through data acquisition nodes in the perception data monitoring network; step S2: preprocessing the original perception data and converting the same into spatio-temporal graph perception data; step S3: constructing a graph neural network model, and training parameters of the graph neural network model by using the spatio-temporal graph perception data; and step S4: inputting given spatio-temporal graph perception data to the trained graph neural network model and outputting a predicted value, and sending early warning information when the predicted value exceeds a preset threshold.


    Access

    Download


    Export, share and cite



    Title :

    METHOD AND SYSTEM FOR PREDICTING SPATIO-TEMPORAL PERCEPTION INFORMATION BASED ON GRAPH NEURAL NETWORK


    Additional title:

    VERFAHREN UND SYSTEM ZUR VORHERSAGE VON RÄUMLICH-ZEITLICHEN WAHRNEHMUNGSINFORMATIONEN AUF BASIS EINES NEURONALEN GRAPHNETZWERKS
    PROCÉDÉ ET SYSTÈME DE PRÉDICTION D'INFORMATIONS DE PERCEPTION SPATIO-TEMPORELLE SUR LA BASE D'UN RÉSEAU NEURONAL GRAPHIQUE


    Contributors:
    CHEN HONGYANG (author) / HU BINGYANG (author) / QI QINGGUO (author) / LI ZHAO (author)

    Publication date :

    2024-02-14


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS





    Predicting Multiple Traffic Features using a Spatio-Temporal Neural Network Architecture

    Ichim, Bogdan / Iordache, Florin | TIBKAT | 2022

    Free access

    Spatio-Temporal Graph Neural Network for Traffic Prediction Based on Adaptive Neighborhood Selection

    Sun, HuanZhong / Tang, XiangHong / Lu, JianGuang et al. | Transportation Research Record | 2023


    Bi-GRCN: A Spatio-Temporal Traffic Flow Prediction Model Based on Graph Neural Network

    Wenhao Jiang / Yunpeng Xiao / Yanbing Liu et al. | DOAJ | 2022

    Free access