The invention discloses a water traffic accident ship trajectory reconstruction method based on a physical neural network architecture, and belongs to the technical field of ship trajectory prediction. Comprising the following steps: constructing an improved BERT-Base-Channel model, extracting water traffic accident report information, and combining a ship motion mathematical model to obtain a data set; according to the method, a physical neural network model is constructed, a Diffusion-TS model is taken as a basic framework to perform water traffic accident ship trajectory reconstruction, an encoder part is changed into a double-encoder interaction mode, and meanwhile, loss based on a ship motion mathematical model and loss based on a water traffic collision avoidance rule are introduced into a loss function. According to the method, under the condition that input information is limited, domain knowledge is embedded into the neural network, the requirement of the model for training data is effectively reduced, the application range and precision of the model in ship trajectory reconstruction of the water traffic accident are remarkably improved, and the algorithm interpretability is enhanced.

    本发明公开了基于物理神经网络架构的水上交通事故船舶轨迹重建方法,属于船舶轨迹预测技术领域。包括构建改进的BERT‑Base‑Chinese模型,提取水上交通事故报告信息,并结合船舶运动数学模型得到数据集;构建物理神经网络模型,以Diffusion‑TS模型为基础框架进行水上交通事故船舶轨迹重建,并将其编码器部分改为双编码器交互方式,同时在损失函数引入基于船舶运动数学模型的损失和基于水上交通避碰规则的损失。本发明方法在输入信息有限的条件下,通过将领域知识嵌入神经网络,有效减少了模型对训练数据的需求,显著提升了模型在水上交通事故船舶轨迹重建中的适用范围与精度,并增强了算法可解释性。


    Access

    Download


    Export, share and cite



    Title :

    Water traffic accident ship trajectory reconstruction method based on physical neural network architecture


    Additional title:

    基于物理神经网络架构的水上交通事故船舶轨迹重建方法


    Contributors:
    LIU TAO (author) / HONG HAO (author) / CHEN JIHONG (author) / LEI ZHENGLING (author) / FENG DAOLUN (author) / WU HUAFENG (author) / HUO YUCHI (author) / GAO JIN (author) / LU HOUJUN (author)

    Publication date :

    2025-05-16


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06T Bilddatenverarbeitung oder Bilddatenerzeugung allgemein , IMAGE DATA PROCESSING OR GENERATION, IN GENERAL / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Traffic Accident Reconstruction Technology Research

    Yang, Xiao-Long / Li, Ping / Lv, Tao et al. | Tema Archive | 2013




    Traffic Accident Reconstruction Technology Research

    Yang, Xiao Long ;Li, Ping ;Lv, Tao | Trans Tech Publications | 2013


    Traffic accident severity prediction method based on recurrent neural network

    XU XUECAI / QIAN CHENG / XIAO DAIQUAN | European Patent Office | 2024

    Free access