The invention discloses a traffic flow prediction method based on a dynamic multi-view space-time fusion graph convolutional network, and the method comprises the following steps: collecting road network information, obtaining original data, and carrying out the normalization of the original data; a dynamic multi-view space-time fusion graph convolutional network is constructed, and the network structure is composed of a time decomposition layer, a time gating convolution (TGC) module and an adaptive multi-graph convolution (AMC) module; the time decomposition layer integrates various types of features into dynamic graph embedding, so that the defects of a traditional adjacent matrix in the aspect of simulating a real road network are relieved; the TGC module filters irrelevant information in a plurality of periods through a gating mechanism, so that the model can learn a long-term time mode in traffic data; and the AMC module provides diversified features for the model by using multi-graph embedding, so that the traffic flow prediction precision is further improved.

    本发明公开一种基于动态多视图时空融合图卷积网络的交通流预测方法,包括以下步骤:采集路网信息得到原始数据,并归一化;构造一种动态多视图时空融合图卷积网络,网络结构由时间分解层、时间门控卷积(TGC)模块和自适应多图卷积(AMC)模块组成;时间分解层将多种类型的特征集成到动态图嵌入中,从而缓解传统邻接矩阵在模拟真实道路网络方面的不足;TGC模块通过门控机制过滤多个周期中的无关信息,使模型能够学习交通数据中的长期时间模式;AMC模块利用多图嵌入为模型提供多样化特征,实现交通流预测精度的进一步提高。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction method based on dynamic multi-view space-time fusion graph convolutional network


    Additional title:

    基于动态多视图时空融合图卷积网络的交通流预测方法


    Contributors:
    SHI QUAN (author) / CAO CHENYANG (author) / BAO YINXIN (author) / SHEN QINQIN (author) / CAO YANG (author)

    Publication date :

    2025-01-03


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Multi-view fusion space-time dynamic graph convolutional network urban traffic flow prediction method

    YUAN GUAN / ZHAO WENZHU / ZHANG YANMEI et al. | European Patent Office | 2023

    Free access

    Traffic flow prediction method based on multi-view dynamic graph convolutional network

    HUANG XIAOHUI / YE YUMING / LING JIAHAO et al. | European Patent Office | 2022

    Free access

    Space-time adaptive dynamic graph convolutional network traffic flow prediction method

    CUI WENTIAN / LOU JUNGANG / SHEN QING et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method of space-time attention graph convolutional network based on multi-feature fusion

    CHEN YAJUN / DING ZHIMING / GUO LIMIN | European Patent Office | 2023

    Free access

    Traffic flow prediction method based on adaptive dynamic fusion graph convolutional network

    ZHANG SHUAI / YU WANGZHI / LEE HAE KWANG et al. | European Patent Office | 2024

    Free access