The invention discloses an interpretable vehicle trajectory prediction method and system based on a weighted graph attention network, and the method comprises the steps: collecting the historical features of all traffic participants in an unmanned scene; based on the historical features, constructing an interpretable vehicle trajectory prediction model; and using the interpretable vehicle trajectory prediction model to complete vehicle trajectory prediction. According to the method, non-additive fusion is carried out on explainable and unexplainable effects, and high prediction precision and explainability are achieved at the same time. Meanwhile, the weighted graph attention network can more effectively learn the interaction between the target vehicle and the environment in the graph structure, so that the prediction precision is improved. The method can provide interpretability for predicted regional distribution. According to the method, high-precision interpretability is realized on a big data set, and the method can be applied to other fields to research an interpretability mechanism of a deep learning model.

    本发明公开了基于加权图注意力网络的可解释车辆轨迹预测方法及系统,方法步骤包括:采集无人驾驶场景中,所有交通参与者的历史特征;基于历史特征,构建可解释车辆轨迹预测模型;利用可解释车辆轨迹预测模型完成车辆轨迹预测。本发明通过对可解释和不可解释的效用进行非加性融合,同时实现了高预测精度和可解释性。同时,加权图注意力网络可以更有效地学习图结构中目标车辆与环境之间的相互作用,从而提高预测精度。本发明可以为预测的区域分布提供可解释性。这种方法在大数据集上实现了高精度的可解释性,且可应用于其他领域,研究深度学习模型的可解释性机制。


    Access

    Download


    Export, share and cite



    Title :

    Weighted graph attention network-based interpretable vehicle trajectory prediction method and system


    Additional title:

    基于加权图注意力网络的可解释车辆轨迹预测方法及系统


    Contributors:
    ZHOU YIWEI (author) / CHAMOT (author)

    Publication date :

    2024-11-26


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    IMGCN: interpretable masked graph convolution network for pedestrian trajectory prediction

    Chen, Wangxing / Sang, Haifeng / Wang, Jinyu et al. | Taylor & Francis Verlag | 2024


    Attention Based Vehicle Trajectory Prediction

    Messaoud, Kaouther / Yahiaoui, Itheri / Verroust-Blondet, Anne et al. | IEEE | 2021


    Hybrid attention based vehicle trajectory prediction

    Wang, Lingyang / Jiang, Wenping | SAGE Publications | 2024


    Multi-Agent Trajectory Prediction with Graph Attention Isomorphism Neural Network

    Liu, Yongkang / Qi, Xuewei / Sisbot, Emrah Akin et al. | IEEE | 2022


    Variational Autoencoder-Based Vehicle Trajectory Prediction with an Interpretable Latent Space

    Neumeier, Marion / Betsch, Michael / Tollkuhn, Andreas et al. | IEEE | 2021