The invention provides an LSTM-based space target orbit error prediction method and system, and the method comprises the steps: obtaining satellite precise ephemeris data, TLE data and SGP prediction orbit data, and constructing a data set; providing a long-short-term memory network model, and performing network structure debugging and network hyper-parameter setting on the long-short-term memory network model to obtain an initial prediction model; training the initial prediction model by using the data set to obtain a final error prediction model; and predicting the space target orbit error by using the error prediction model. According to the LSTM-based space target orbit error prediction method and system provided by the invention, the dependence on physical parameters is reduced, complex physical conditions do not need to be considered, and historical orbit data is completely taken as a learning object to predict a future orbit; meanwhile, the training amount is reduced, and the model does not need to be trained independently for each fragment.

    本发明提供了一种基于LSTM的空间目标轨道误差预测方法及系统,获取卫星精密星历数据、TLE数据以及SGP预测轨道数据,构建数据集;提供一长短时记忆网络模型,对所述长短时记忆网络模型进行网络结构调试和网络超参数设置,得到初始预测模型;利用所述数据集对所述初始预测模型进行训练,得到最终的误差预测模型;利用所述误差预测模型对空间目标轨道误差进行预测。本发明上提供的基于LSTM的空间目标轨道误差预测方法及系统,减少了对物理参数的依赖,不需要考虑复杂的物理情况,完全以历史轨道数据为学习对象,对未来轨道进行预测;同时减少了训练量,不需要针对每个碎片单独训练模型。


    Access

    Download


    Export, share and cite



    Title :

    LSTM-based space target orbit error prediction method and system


    Additional title:

    基于LSTM的空间目标轨道误差预测方法及系统


    Contributors:
    ZHU YE (author) / WANG ZHENGRONG (author) / LAN QING (author) / ZUO YIZHENG (author) / LAI YI (author)

    Publication date :

    2024-07-09


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    B64G Raumfahrt , COSMONAUTICS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Diwata-1 Target Pointing Error Assessment using orbit and space environment prediction model

    Magallon, Benjamin Jonah P. / Labrador, John Leur D. / Gonzalez, Ariston N. et al. | IEEE | 2018


    TCN-LSTM-based underground space passenger flow prediction method and system

    LIU SHENG / LI XINYUE / CAO TING et al. | European Patent Office | 2024

    Free access

    LSTM LSTM-based future threat prediction method and apparatus

    PARK YOUNG TACK / JEON MYUNG JOONG / KIM MIN SUNG et al. | European Patent Office | 2021

    Free access

    Space target space-based monitoring efficiency evaluation optimization orbit determination method

    ZHU SHENGYING / GUAN YI / TIAN PENG et al. | European Patent Office | 2024

    Free access

    A Vehicular GPS Error Prediction Model Based on Data Smoothing Preprocessed LSTM

    Liu, Sheng / Elangovan, Vivekanandh / Xiang, Weidong | IEEE | 2019