The invention discloses a short-term traffic flow prediction method based on a new deep space-time adaptive fusion graph network, and the method comprises the steps: firstly constructing an adaptive adjacency matrix which can be continuously updated in each iteration training; and then parallel fusion is carried out on graphs constructed from different angles according to the traffic flow data to obtain a new space-time fusion matrix. The adaptive matrix and the time-space fusion matrix are subjected to graph diffusion convolution at the same time to capture hidden time-space dependency, and finally captured features are subjected to deeper network model training to obtain a prediction result. According to the invention, a test experiment is carried out on a plurality of traffic flow data sets, and the experiment result shows that the network performance is superior to that of the most advanced method at present.

    本发明公开了一种基于新深空时自适应融合图网络的短期交通流预测方法,首先构造自适应邻接矩阵,该邻接矩阵可以在每一次迭代训练中不断更新。然后再根据交通流数据从不同角度构造出来的图进行并行融合得到一个新的时空融合矩阵。自适应矩阵及时空融合矩阵同时进行图扩散卷积来捕获隐藏时空依赖性,最后捕获到的特征去进行更深层次网络模型的训练得出预测结果。本发明在多个交通流数据集上进行测试实验,实验结果表明该网络性能优于目前最先进的方法。


    Access

    Download


    Export, share and cite



    Title :

    Short-term traffic flow prediction method based on new deep space-time adaptive fusion graph network


    Additional title:

    基于新深空时自适应融合图网络的短期交通流预测方法


    Contributors:
    ZHOU TENG (author) / YANG SHUMIN (author) / LI HUAYING (author)

    Publication date :

    2022-09-06


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Road network short-term traffic flow prediction method based on deep space-time residual network

    SHI QUAN / DING XINYU / SHI ZHENQUAN et al. | European Patent Office | 2021

    Free access

    Space-time adaptive dynamic graph convolutional network traffic flow prediction method

    CUI WENTIAN / LOU JUNGANG / SHEN QING et al. | European Patent Office | 2024

    Free access

    Short-term traffic flow prediction method based on space-time convolutional network

    JIA CHAOLONG / KANG ZHEYI / PENG GANG et al. | European Patent Office | 2023

    Free access

    Traffic flow prediction method based on fusion of space-time adaptive graph learning and dynamic graph convolution

    ZHANG HONG / CHEN LINBIAO / CHEN LINLONG et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method based on adaptive dynamic fusion graph convolutional network

    ZHANG SHUAI / YU WANGZHI / LEE HAE KWANG et al. | European Patent Office | 2024

    Free access