Modern fighter aircraft using active electronically scanned array (AESA) fire control radars are able to detect and track targets at long ranges, in the order of 50 nautical miles or more. Low observable or stealth technology has contested the radar capabilities, reducing detection/tracking ranges roughly to one-third (or even less, for fighter aircraft radar). Hence, infrared search and track (IRST) systems have been reconsidered as an alternative to the radar. This study aims to explore and compare the capabilities and limitations of these two technologies, AESA radars and IRST systems, as well as their synergy through sensor fusion.

    Design/methodology/approach

    The AESA radar range is calculated with the help of the radar equation under certain assumptions, taking into account heat dissipation requirements, using the F-16 fighter as a case study. Concerning the IRST sensor, a new model is proposed for the estimation of the detection range, based on the emitted infrared radiation caused by aerodynamic heating.

    Findings

    The maximum detection range provided by an AESA radar could be restricted because of the increased waste heat which is produced and the relevant constraints concerning the cooling capacity of the carrying aircraft. On the other hand, IRST systems exhibit certain advantages over radars against low observable threats. IRST could be combined with a datalink with the help of data fusion, offering weapons-quality track.

    Originality/value

    An original approach is provided for the IRST detection range estimation. The AESA/IRST comparison offers valuable insight, while it allows for more efficient planning, at the military acquisition phase, as well as at the tactical level.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    AESA radar and IRST against low observable threats



    Published in:

    Publication date :

    2020-03-27


    Size :

    1 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    AIR SANITIZATION USING AESA RADAR

    Faulk, David K. / Frey, Thomas L. | TIBKAT | 2020


    Air Sanitization Using AESA Radar

    Faulk, David K. / Frey, Thomas L. | AIAA | 2020


    UK airborne AESA radar research

    Moore, Stephen | IEEE | 2010


    AESA Upgrade Option for Eurofighter Captor Radar

    Barclay, M | Online Contents | 2010


    AESA upgrade option for Eurofighter Captor Radar

    Barclay, M / Pietzschmann, U / Gonzalez, G et al. | IEEE | 2010