The purpose of the paper is to analyze the active suppression of the aeroelastic vibrations of ailerons with strongly nonlinear characteristics by neural network/reinforcement learning (NN/RL) control method and comparing it with the classic robust methods of suppression.

    Design/methodology/approach

    The flexible wing and aileron with hysteresis nonlinearity is treated as a plant-controller system and NN/RL and robust controller are used to suppress the nonlinear aeroelastic vibrations of aileron. The simulation approach is used for analyzing the efficiency of both types of methods in suppressing of such vibrations.

    Findings

    The analysis shows that the NN/RL controller is able to suppress the nonlinear vibrations of aileron much better than linear robust method, although its efficiency depends essentially on the NN topology as well as on the RL strategy.

    Research limitations/implications

    Only numerical analysis was carried out; thus, the proposed solution is of theoretical value, and its application to the real suppression of aeroelastic vibrations requires further research.

    Practical implications

    The work shows the NN/RL method has a great potential in improving suppression of highly nonlinear aeroelastic vibrations, opposed to the classical robust methods that probably reach their limits in this area.

    Originality/value

    The work raises the questions of controllability of the highly nonlinear aeroelastic systems by means of classical robust and NN/RL methods of control.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Suppression of nonlinear aeroelastic vibrations by learned neural network controller


    Contributors:

    Published in:

    Publication date :

    2018-10-08


    Size :

    1 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English