Abstract Alternative fuels and fuel-flexible ships are often seen as promising solutions for achieving significant greenhouse gas reductions in shipping. We formulate the selection of alternative fuels and corresponding ship power systems as a bi-objective integer optimization problem. We apply our model to a Supramax Dry-bulker and solve it for a lower bound price scenario including a carbon tax. Within this setting, the question whether bio-fuels will be available to shipping has significant effect on the lifetime costs. For the given scenario and case study ship, our model identifies LNG as a robust power system choice today for a broad range of GHG reduction ambitions. For high GHG reduction ambitions, a retrofit to ammonia, produced from renewable electricity, appears to be the most cost-effective option. While these findings are case-specific, the model may be applied to a broad range of cargo ships.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Optimal ship lifetime fuel and power system selection




    Publication date :

    2021-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Optimal ship lifetime fuel and power system selection under uncertainty

    Lagemann, Benjamin / Lagouvardou, Sotiria / Lindstad, Elizabeth et al. | Elsevier | 2023



    Power system for dual-fuel ship and ship

    ZHAI JIAWEI / XU ZHANYONG / JIANG LINYONG et al. | European Patent Office | 2022

    Free access

    Fuel-free ship power system

    ZHU HANCHEN / ZHU SHUXUAN | European Patent Office | 2024

    Free access

    Coating lasts for ship lifetime

    Online Contents | 2007