AbstractThis paper investigates the problem of continuous-thrust orbital transfer using orbital elements feedback from a nonlinear control standpoint, utilizing concepts of controllability, feedback stabilizability and their interaction. Gauss's variational equations (GVEs) are used to model the state-space dynamics of motion under a central gravitational field. First, the notion of accessibility is reviewed. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived which asymptotically steers a spacecraft form an initial elliptic orbit to any given elliptic orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proven, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft onto a parabolic escape trajectory.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Nonlinear feedback control of low-thrust orbital transfer in a central gravitational field


    Contributors:

    Published in:

    Acta Astronautica ; 60 , 8-9 ; 631-648


    Publication date :

    2006-01-01


    Size :

    18 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English