Abstract Based on the unsteady viscous flow simulation, the flow characteristics inside the supersonic jet Element have been investigated numerically. The results have revealed that once the specific structures of the supersonic jet element are finalized, even if the boundary conditions remain unchanged, the corresponding internal flow will also shows strong unsteady in a certain range of primary gas source pressure. The instability of the main vortex center is a main reason to make the output thrust of the supersonic jet components fluctuate all the time in the attached wall condition. At the deflection of the jet stage, once the static pressure for the right side of the wedge exceeds the left side, the transverse expansion for the stripping zone near the right output channel entrance can play a significant role in making the primary jet deflect successfully. When the jet starts to attach the wall layer, due to the “Coanda” effect, the jet also can attach the layer successfully even though the corresponding control flow is totally closed. When the jet enters the adjustment stage, the thrust changes process for the left and right outputs will experience two typical stages: adjusting and adjusted stages. The corresponding vortex structures at different switching time together with the force variations etc. inside the jet Element have been obtained computationally and analyzed in details.

    Highlights The instability of main vortex center is a main reason to make the output thrust fluctuate. The transverse expansion for the stripping zone can make the primary jet deflect successfully. Jet can attach the layer successfully due to “Coanda” effect even though control flow is totally closed. The thrust changes process will experience two typical stages: adjusting and adjusted stages.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Switching mechanism investigation for the supersonic jet element: Deflection, attachment and adjustment stages


    Contributors:
    Xu, Y. (author) / Zhang, G.Q. (author)

    Published in:

    Acta Astronautica ; 163 ; 208-224


    Publication date :

    2019-05-16


    Size :

    17 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Force-Deflection Behavior of a Smart Attachment Mechanism

    Clement, Joseph / Brei, Diann | AIAA | 2003


    Force-Deflection Behavior of a Smart Attachment Mechanism

    Clement, J. / Brei, D. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2003


    Fan Flow Deflection for Supersonic Turbofan Engines

    Papamoschou, Dimitri / Nielsen, Preben | AIAA | 2008


    Fan Flow Deflection for Supersonic Turbofan Engines

    Papamoschou, D. / Nielsen, P. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2008