Abstract The capability of autonomous fault detection and reconstruction is essential for future manned Mars exploration missions. Considering actuator failures and atmosphere uncertainties, we present a new active fault-tolerant control algorithm for Mars entry by use of neural network and structure adaptive model inversion. First, the online BP neural network is adopted to conduct the fault detection and isolation. Second, based on the structure adaptive model inversion, an adaptive neural network PID controller is developed for Mars entry fault-tolerant control. The normal PID controller will be automatically switched into neural network PID controller when an actuator fault is detected. Therefore, the error between the reference model and the output of the attitude control system would be adjusted to ensure the dynamic property of the entry vehicle. Finally, the effectiveness of the algorithm developed in this paper is confirmed by computer simulation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Mars entry fault-tolerant control via neural network and structure adaptive model inversion


    Contributors:
    Huang, Yixin (author) / Li, Shuang (author) / Sun, Jun (author)

    Published in:

    Advances in Space Research ; 63 , 1 ; 557-571


    Publication date :

    2018-09-10


    Size :

    15 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Fault Tolerant Control Allocation for Mars Entry Vehicle using Adaptive Control

    Marwaha, M. / Valasek, J. | British Library Conference Proceedings | 2008


    Integrated Guidance and Fault Tolerant Adaptive Control for Mars Entry Vehicle

    Marwaha, Monika / Singh, Baljeet / Valasek, John et al. | AIAA | 2009


    Integrated Guidance and Fault Tolerant Adaptive Control for Mars Entry Vehicle

    Marwaha, M. / Singh, B. / Valasek, J. et al. | British Library Conference Proceedings | 2009