Highlights ► The preference of spatial unit can vary with the dependent variable of the model. ► Aggregation of spatial units in modeling is addressed. ► Hierarchical Bayesian models. ► Performance of the crash specific models for TAZs and BGs are comparable. ► TAZ has a relative ascendancy over block group and census tract in terms of practice and integration with LRTPs.

    Abstract A wide array of spatial units has been explored in macro-level modeling. With the advancement of Geographic Information System (GIS) analysts are able to analyze crashes for various geographical units. However, a clear guideline on which geographic entity should be chosen is not present. Macro level safety analysis is at the core of transportation safety planning (TSP) which in turn is a key in many aspects of policy and decision making of safety investments. The preference of spatial unit can vary with the dependent variable of the model. Or, for a specific dependent variable, models may be invariant to multiple spatial units by producing a similar goodness-of-fits. In this study three different crash models were investigated for traffic analysis zones (TAZs), block groups (BGs) and census tracts (CTs) of two counties in Florida. The models were developed for the total crashes, severe crashes and pedestrian crashes in this region. The primary objective of the study was to explore and investigate the effect of zonal variation (scale and zoning) on these specific types of crash models. These models were developed based on various roadway characteristics and census variables (e.g., land use, socio-economic, etc.). It was found that the significance of explanatory variables is not consistent among models based on different zoning systems. Although the difference in variable significance across geographic units was found, the results also show that the sign of the coefficients are reasonable and explainable in all models. Key findings of this study are, first, signs of coefficients are consistent if these variables are significant in models with same response variables, even if geographic units are different. Second, the number of significant variables is affected by response variables and also geographic units. Admittedly, TAZs are now the only traffic related zone system, thus TAZs are being widely used by transportation planners and frequently utilized in research related to macroscopic crash analysis. Nevertheless, considering that TAZs are not delineated for traffic crash analysis but they were designed for the long range transportation plans, TAZs might not be the optimal zone system for traffic crash modeling at the macroscopic level. Therefore, it recommended that other zone systems be explored for crash analysis as well.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Geographical unit based analysis in the context of transportation safety planning


    Contributors:


    Publication date :

    2013-01-03


    Size :

    14 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Integrating Safety into the Transportation Planning Process

    Ravanbakht, Camelia / Belfield, Samuel S. / Nichols, Keith M. | Transportation Research Record | 2005



    Explicit Consideration of Safety in Transportation Planning

    Scoping, Project | Online Contents | 2004


    Transportation Safety Analysis

    H. C. Joksch | NTIS | 1976