Abstract This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Expression of estrogen receptor α in human breast cancer cells regulates mitochondrial oxidative stress under simulated microgravity


    Contributors:
    Zheng, Hong-xia (author) / Tian, Wei-ming (author) / Yan, Hong-ji (author) / Jiang, Hua-dong (author) / Liu, Shan-shan (author) / Yue, Lei (author) / Han, Fang (author) / Wei, Li-jun (author) / Chen, Xiong-biao (author) / Li, Yu (author)

    Published in:

    Advances in Space Research ; 49 , 10 ; 1432-1440


    Publication date :

    2012-02-16


    Size :

    9 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English