Highlights Developing a methodology to optimize the trajectory and merging sequence of CAVs in roundabouts. Formulating a mathematical model with explicit representation of vehicle paths and collision avoidance constraints following a two-dimensional point-mass model. Developing a customized solution technique that transforms the two-dimensional optimization problem into a combination of easier one- and two-dimensional sub-problems. Trajectory optimization reduced the total travel times by 9.1% to 36.8% compared to a scenario with human-driven vehicles.

    Abstract This paper introduces a methodology to optimize the trajectory of connected automated vehicles (CAVs) in roundabouts using a two-dimensional point-mass model. We formulate an optimization problem that includes vehicle dynamics and collision-avoidance constraints with explicit representation of vehicle paths. The objective function of the problem minimizes the distance of CAVs to their destinations and their acceleration magnitudes. The methodology also involves a customized solution technique that convexifies the collision-avoidance constraints and employs the alternating direction method of multipliers to decompose the convexified problem into two sub-problems. The first sub-problem only includes vehicle dynamics constraints while the second sub-problem projects the solutions of the first sub-problem onto a collision-free region. The first sub-problem is then transformed into a quadratic problem by redefining its decision variables along vehicle paths. The transformation allows solving this sub-problem with several vehicle-level problems in a distributed architecture. Moreover, we show that iterating between the two sub-problems leads to convergence to the optimal solutions of the convexified problem. The methodology is applied to a case study roundabout with different demand levels. The results show that the trajectory optimization reduced the total travel times and average delays respectively by 9.1% to 36.8% and 95.8% to 98.5% compared to a scenario with human-driven vehicles.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Connected automated vehicle control in single lane roundabouts


    Contributors:


    Publication date :

    2021-07-13




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Automated vehicle driving on large lane-free roundabouts*

    Naderi, Mehdi / Papageorgiou, Markos / Karafyllis, Iasson et al. | IEEE | 2022


    Traffic management with autonomous and connected vehicles at single-lane roundabouts

    Martin-Gasulla, Marilo / Elefteriadou, Lily | Elsevier | 2021


    Controlling Automated Vehicles on Large Lane-Free Roundabouts

    Naderi, Mehdi / Papageorgiou, Markos / Troullinos, Dimitrios et al. | IEEE | 2024


    Modeling driving behavior at single-lane roundabouts

    Zhao, Min / Technische Universität Braunschweig | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2019