Abstract Vacuum exposure renders the survival of spores of Bacillus subtilis approximately five times more sensitive to ultraviolet light irradiation than exposure under atmospheric conditions. The photoproduct formation in spores irradiated under ultrahigh vacuum (UHV) conditions is compared to the photoproduct formation in spores irradiated at atmospheric pressure. Compared to irradiation at atmospheric pressure, where only the “spore photoproduct″ 5-thyminyl-5,6-dihydrothymine (TDHT) can be detected, two additional photoproducts, known as the c,s and t,s isomers of thymine dimer (T???T) are produced in vacuo. The spectral efficiencies for photoproduct formation in spores under atmospheric and vacuum conditions are compared. Since there is no increased formation of TDHT after irradiation in vacuum, TDHT cannot be made responsible for the observed vacuum effect. “Vacuum specific” photoproducts may cause a synergistic response of spores to the simultaneous action of ultraviolet light (UV) and UHV. Three different mechanisms are discussed for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuum. The experiments described contribute valuable research information on the chance for survival of microorganisms in outer space.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Thymine photoproduct formation and inactivation of intact spores of Bacillus subtilis irradiated with short wavelength UV (200–300nm) at atmospheric pressure and in vacuo


    Contributors:
    Lindberg, C. (author) / Horneck, G. (author)

    Published in:

    Advances in Space Research ; 12 , 4 ; 275-279


    Publication date :

    1991-01-01


    Size :

    5 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English