Abstract In this paper, the potential effectiveness of a nonlinear energy sink (NES) to absorb the energy from a wing that is vibrating as a result of flying in a gusty environment is investigated. The structural dynamics of the wing is simulated using a rigid airfoil mounted on two linear/nonlinear springs to represent the bending and torsional stiffness of the wing. The wing is subjected to a combination of gust and aerodynamic loads. The unsteady aerodynamic lift and moment are modelled using Wagner's theory. Furthermore, the gust loads are obtained by assuming two different gust profiles, e.g. sharp-edged and 1-cosine gust profiles. A nonlinear energy sink, which comprises of a concentrated mass, damper and a nonlinear spring, is attached to the wing, and its effectiveness to absorb the gust energy is investigated. The coupled nonlinear aeroelastic equations are integrated numerically to determine the response of the wing. To verify the developed aeroelastic model, the obtained results are compared with the available results in the literature and an excellent agreement is observed. The results highlight that adding the NES to the wing is capable of reducing the gust oscillation amplitude of the wing significantly when the NES parameters are chosen accordingly.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    The effect of a nonlinear energy sink on the gust response of a wing


    Contributors:


    Publication date :

    2024-01-17




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Nonlinear Aeroelastic Response of Delta Wing to Periodic Gust

    Deman Tang / James K. Henry / Earl H. Dowell | AIAA | 2000


    Gust Response of Flexible Wing-Tail Configurations

    De Troia, R. / Gennaretti, M. / Morino, L. et al. | British Library Conference Proceedings | 1995


    Powered Wing Response to Periodic Gust Encounters

    Duncan, Lucas A. / Cai, Jielong / Gunasekaran, Sidaard | AIAA | 2023


    Wing gust mitigation model

    MA XIANG / ZHAO DONGQIANG / HUANG GUONING et al. | European Patent Office | 2021

    Free access

    Nonlinear Folding Wing-Tips for Gust Loads Alleviation

    Castrichini, Andrea / Hodigere Siddaramaiah, Vijaya / Calderon, Dario et al. | AIAA | 2015