Abstract This paper studies the sustainability of an Earth observation mission that utilizes a multiple-payload fractionated system consisting of twelve eight-unit CubeSats, with respect to the CubeSat failures. It proposes practical approaches to the CubeSat replacement, deorbiting and orbit insertion maneuvering, as well as task reallocation. The performance and failure analyses, using Monte-Carlo simulations, suggest that by having a maximum of four reserved CubeSats in orbit the impact of CubeSat failures on the mission can be notably lessoned. It can also lower the total number of required launches for the entire mission lifetime. A maneuvering sequence that can set a new CubeSat on a precise trajectory to reach its designated orbital position is formulated, and it is shown that the total Δ V required for correcting the initial orbit deviation can be significantly reduced by taking benefit from the J 2 perturbation. A deorbiting analysis proves that each failed CubeSat can be safely removed from the orbit if equipped with a stand-alone drag sail unit. A dynamic approach is proposed toward the reallocation of the tasks of the failed CubeSats to the operational ones, using a combinatorial auction-based real-time algorithm, and its performance is studied, in terms of success rate, optimal utilization and CPU time, under different circumstances with respect to the use of reserved CubeSats, partial or complete reallocation, and task redundancy.

    Highlights CubeSat replacement strategy for sustainability of Earth observation fractionated spacecraft. Fuel-effective maneuvering for CubeSat orbit insertion by utilizing JJ2 perturbation effect. Collision avoidance strategy for safely removing the failed CubeSats from the orbit. Real-time task reallocation for fractionated system after replacing a failed CubeSat.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Satellite replacement and task reallocation for multiple-payload fractionated Earth observation mission


    Contributors:

    Published in:

    Acta Astronautica ; 196 ; 157-175


    Publication date :

    2022-04-13


    Size :

    19 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Multiple-payload fractionated spacecraft for earth observation

    Alandihallaj, M. Amin / Emami, M. Reza | Elsevier | 2021


    FRACTIONATED PAYLOAD SYSTEM AND METHOD THEREFOR

    LUECKE JIM | European Patent Office | 2020

    Free access

    UzayMP: Modular mission planning tool for earth observation satellites with imaging payload

    Isik, Narin / Avenoglu, Bulent / Imre, Suleyman Egemen et al. | IEEE | 2015


    CESAR: A Small Satellite Mission for Earth Observation

    Urech, A. / Acedo, L. / Caruso, D. et al. | British Library Conference Proceedings | 2000


    EARTH OBSERVATION PAYLOAD FOR SMALL SATELLITES

    Ahmed, Ayman / Metwally, Mohamed | TIBKAT | 2021