Highlights A hierarchical decision and control framework for cooperative platoons interacting with merging traffic efficiently. A supervisory tactical strategy generates optimal vehicle order after the merge, new equilibrium gaps of cooperative vehicles at the merging point, and anticipation horizon that the platoon starts to act to track the new equilibrium gaps. The lower-level operational layer gives the optimal vehicle accelerations so that new equilibrium gaps have been created when merging vehicles start to change lane and the transient maneuvers are efficient, safe and comfortable. Robust framework against model parameter uncertainties and system delay.

    Abstract Truck platooning has attracted substantial attention due to its pronounced benefits in saving energy and promising business model in freight transportation. However, one prominent challenge for the successful implementation of truck platooning is the safe and efficient interaction with surrounding traffic, especially at network discontinuities where mandatory lane changes may lead to the decoupling of truck platoons. This contribution puts forward an efficient method for splitting a platoon of vehicles near network merges. A model-based bi-level control strategy is proposed. A supervisory tactical strategy based on a first-order car-following model with bounded acceleration is designed to maximize the flow at merge discontinuities. The decisions taken at this level include optimal vehicle order after the merge, new equilibrium gaps of automated trucks at the merging point, and anticipation horizon that the platoon members start to track the new equilibrium gaps. The lower-level operational layer uses a third-order longitudinal dynamics model to compute the optimal truck accelerations so that new equilibrium gaps are created when merging vehicles start to change lane and the transient maneuvers are efficient, safe and comfortable. The tactical decisions are derived from an analytic car-following model and the operational accelerations are controlled via model predictive control with guaranteed stability. Simulation experiments are provided in order to test the feasibility and demonstrate the performance and robustness of the proposed strategy.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A hierarchical approach for splitting truck platoons near network discontinuities


    Contributors:


    Publication date :

    2019-04-10


    Size :

    18 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Reliability Analysis of Bridges for Autonomous Truck Platoons

    Sajid, Sikandar / Chouinard, Luc / Legeron, Frederic et al. | Transportation Research Record | 2022

    Free access

    Fuel-Efficient En Route Formation of Truck Platoons

    van de Hoef, Sebastian / Johansson, Karl Henrik / Dimarogonas, Dimos V. | IEEE | 2018


    Realisation of electronically coupled Truck Platoons on German Highways

    Lank, Christian / Deutschle, Stefan / Keßler, Günter C. et al. | Tema Archive | 2010


    Use on electronically linked konvoi truck platoons on motorways

    Deutschle,S. / Kessler,G.C. / Lank,C. et al. | Automotive engineering | 2010