This paper presents impedance controllers with adaptive friction compensation for the five-finger dexterous robot hand DLR-HIT II in both joint and Cartesian space. A FPGAbased control hardware and software architecture with real-time communication is designed to fulfill the requirements of the impedance controller. Modeling of the robot finger with exible joints and mechanical couplings in the differential gear-box are described in this paper. In order to address the friction due to the complex transmission system and joint coupling, an adaptive model-based friction estimation method is carried out with an Extended Kalman Filter. Performance of the impedance controller with both adaptive and parameters-xed friction compensation for the robot hand DLR-HIT II are analyzed and compared in this paper. Futhermore, gravity estimation is implemented with Least Squares technique to address uncertainties in gravity compensation due to the close proximity and complexity of robot hand components. Experimental results prove that accurate position tracking and stable torque/force response can be achieved with the proposed impedance controller with friction compensation on five-finger dexterous robot hand DLR-HIT II.


    Access

    Download


    Export, share and cite



    Title :

    Experimental Evaluation of Cartesian and Joint Impedance Control with Adaptive Friction Compensation for the Dexterous Robot Hand DLR-Hit II


    Contributors:
    Chen, Zhaopeng (author) / Lii, Neal Y. (author) / Wimböck, Thomas (author) / Shaowei, Fan (author) / Hong, Liu (author)

    Published in:

    Publication date :

    2011-12-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Cartesian Impedance Control on Five-Finger Dexterous Robot Hand DLR-HIT II with Flexible Joint

    Chen, Zhaopeng / Lii, Neal Y. / Jin, Minghe et al. | German Aerospace Center (DLR) | 2010

    Free access

    Experimental Study on Impedance Control for the Five-Finger Dexterous Robot Hand DLR-HIT II

    Chen, Zhaopeng / Lii, Neal Y. / Wimböck, Thomas et al. | German Aerospace Center (DLR) | 2010

    Free access

    Flexible FPGA-Based Controller Architecture for Five-fingered Dexterous Robot Hand with Effective Impedance Control

    Chen, Zhaopeng / Lii, Neal Y. / Wu, Ke et al. | German Aerospace Center (DLR) | 2009

    Free access

    Dexterous underwater robot hand: HEU Hand II

    Meng, Qingxin / Hua Wang / Ping Li et al. | Tema Archive | 2006