Guaranteeing safety for humans in shared workspaces is not trivial. Not only must all possible situations be provably safe, but the human must feel safe as well. While robots are gradually leaving their cages, due to strict safety requirements, engineers often only replace physical cages with static safety zones - when the safety zone is entered, the robot is forced to stop. This can lead to excessive robot downtime. We present a concept for guaranteeing non-collision between humans and robots whilst maximising robot uptime and staying on-path. We evaluate how users react to this approach, in a trial over three non-consecutive days, compared to a control approach of static safety zones. We measure working efficiency as well as human factors such as trust, understanding of the robot, and perceived safety. Using our approach, the robot is indeed more efficient compared to static safety zones and the effect persists over multiple trials on separate days. We also observed that understanding of the robot's movement increased for our method over the course of trials, and the perceived safety of the robot increased for both our method and the control.
Improving Efficiency of Human-Robot Coexistence While Guaranteeing Safety: Theory and User Study
2022-09-02
Article (Journal)
Electronic Resource
English
Method for guaranteeing safety and improving comfort of intelligent driving system
European Patent Office | 2024
|Guaranteeing motion safety for robots
British Library Online Contents | 2012
|