Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina (54∘S, 68∘W), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.


    Access

    Download


    Export, share and cite



    Title :

    Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina



    Published in:

    Scientific Reports ; 14529 ; 1-10


    Publication date :

    2020-09-03



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Total drills extended-reach record in Tierra del Fuego

    Vighetto, R. / Naegel, M. / Pradie, E. | Tema Archive | 1999


    Lake-level variations of Lago Fagnano, Tierra del Fuego: observations, modelling and interpretation

    Richter, A. / Hormaechea, J.L. / Dietrich, R. et al. | British Library Online Contents | 2010



    Effects of Beaver (Castor Canadensis) Activities on Forest Ecosystem of Tierra del Fuego

    Lizzarraide, M. / Deferrari, G. / Escobar, J. et al. | British Library Conference Proceedings | 1994