The balanced truncation approach to model reduction is considered for linear discrete-time periodic systems with time-varying dimensions. Stability of the reduced model is proved and a guaranteed additive bound is derived for the approximation error. These results represent generalizations of the corresponding ones for standard discrete-time systems. Two numerically reliable methods to compute reduced order models using the balanced truncation approach are considered. The square-root method and the potentially more accurate balancing-free square-root method belong to the family of methods with guaranteed enhanced computational accuracy. The key numerical computation in both methods is the determination of the Cholesky factors of the periodic Gramian matrices by solving nonnegative periodic Lyapunov equations with time-varying dimensions directly for the Cholesky factors of the solutions.


    Access

    Download


    Export, share and cite



    Title :

    Balanced truncation model reduction of periodic systems


    Contributors:

    Conference:

    2000 ; Sydney (Australia)


    Published in:

    Publication date :

    2000-09-01


    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English





    Modified Balanced Truncation of State Delay Systems

    Young Soo Suh / Shin, S. | British Library Online Contents | 1999



    Truncation and residualization with weighted balanced coordinates

    Newman, Brett / Schmidt, David K. | AIAA | 1994