A new aero gas turbine engine gas path component fault diagnosis method based on multi-hidden-layer extreme learning machine with optimized structure (OM-ELM) was proposed. OM-ELM employs quantum-behaved particle swarm optimization to automatically obtain the optimal network structure according to both the root mean square error on training data set and the norm of output weights. The proposed method is applied to handwritten recognition data set and a gas turbine engine diagnostic application and is compared with basic ELM, multi-hidden-layer ELM, and two state-of-the-art deep learning algorithms: deep belief network and the stacked denoising autoencoder. Results show that, with optimized network structure, OM-ELM obtains better test accuracy in both applications and is more robust to sensor noise. Meanwhile it controls the model complexity and needs far less hidden nodes than multi-hidden-layer ELM, thus saving computer memory and making it more efficient to implement. All these advantages make our method an effective and reliable tool for engine component fault diagnosis tool.


    Access

    Download


    Export, share and cite



    Title :

    Aero Engine Component Fault Diagnosis Using Multi-Hidden-Layer Extreme Learning Machine with Optimized Structure


    Contributors:
    Shan Pang (author) / Xinyi Yang (author) / Xiaofeng Zhang (author)


    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine

    Xinyi Yang / Shan Pang / Wei Shen et al. | DOAJ | 2016

    Free access


    Fault fusion diagnosis of aero-engine based on deep learning

    Che, Changchang / Wang, Huawei / Ni, Xiaomei et al. | British Library Online Contents | 2018


    Sensor Fault Diagnosis and Classification in Aero-engine

    Zhu, Feixiang / Li, Benwei / Li, Zhao et al. | Tema Archive | 2014


    Fault diagnosis for sensors and components of aero-engine

    Yebo, L. / Qiuhong, L. / Xianghua, H. et al. | British Library Online Contents | 2013