Multi‐hop routing in vehicular ad‐hoc networks (VANETs) and wireless sensor networks has attracted significant interest of researchers in the wireless ad‐hoc networks community. Most multi‐hop routing protocols in VANET are based around the idea of choosing the next destination, which will provide the shortest‐delay to reach a destination. To ensure better monitoring and reporting of road condition information, this study proposes location‐based data forwarding through roadside sensors using k ‐shortest path routing combined with Q‐learning. Q‐learning is used for exploration of the sensing field to determine those sensors which have a higher queuing delay during peak hours as well as those which have comparatively lower delays. The use of Q‐learning for exploration (sans routing) enables faster convergence for the sensors as compared to those techniques which utilise naive Q‐learning for shortest path routing. Secondly, multi‐hop routing is being combined with source coding (Huffman and Arithmetic coding) to compress the data payload of packets. This has shown some promising results for the VANETs employing dedicated short‐range communication.


    Access

    Download


    Export, share and cite



    Title :

    Location‐based data delivery between vehicles and infrastructure


    Contributors:


    Publication date :

    2020




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Location‐based data delivery between vehicles and infrastructure

    Khan, Farhan / Nguang, Sing Kiong | Wiley | 2020

    Free access

    Location-based data delivery between vehicles and infrastructure

    Khan, Farhan / Nguang, Sing Kiong | IET | 2020

    Free access

    Location-based content delivery to vehicles

    HARRIS IAN / ABDULAZIZ SALMA | European Patent Office | 2021

    Free access

    Electric vehicles charging infrastructure location: a genetic algorithm approach

    Efthymiou, D. / Chrysostomou, K. / Morfoulaki, M. et al. | British Library Online Contents | 2017


    Electric vehicles charging infrastructure location: a genetic algorithm approach

    Dimitrios Efthymiou / Katerina Chrysostomou / Maria Morfoulaki et al. | DOAJ | 2017

    Free access