For commuters, vehicular traffic is an important planning concern. People have access to the weather forecast and the current traffic situation, but there is no application available to estimate traffic congestion and flow in the near future. Thus, we design and develop a machine learning approach which can predict vehicular traffic density and flowrate up to two days in the future based on the weather, calendar and special events data. First, Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) networks are utilized to predict the number of new vehicles and the total number of vehicles in images captured by a Nova Scotia Webcams (NS Webcams) video camera. The best models provide a Mean Absolute Percentage Error (MAPE) of 20.38% for the number of new vehicles and 18.56% for the total number of vehicles. These values are used to estimate traffic flowrate and density for hourly records over a three-month period. The hourly traffic data is combined with observed and forecasted weather data, and special event data to create a time series data. A Multiple Task Learning (MTL) - LSTM model is trained and tested using these data and a K-fold cross-validation approach. The Mean Absolute Error (MAE) and MAPE are used to evaluate the model performance. The MTL-LSTM model achieves a MAPE of 19.35% and 27.50% for flowrate and density using observed weather data, respectively. In the case of forecasted weather data, the MAPE for flowrate and density increases to 20.51% and 31.10%, respectively.


    Access

    Download


    Export, share and cite



    Title :

    Vehicle Traffic Estimation Using Deep Learning


    Contributors:


    Publication date :

    2022




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    DEEP LEARNING BASED TRAFFIC SIGNS BOUNDARY ESTIMATION

    Hrustic, Emir / Xu, Zhujun / Vivet, Damien | British Library Conference Proceedings | 2020


    Deep Learning Based Traffic Signs Boundary Estimation

    Hrustic, Emir / Xu, Zhujun / Vivet, Damien | IEEE | 2020


    Deep Learning Enhanced Road Traffic Analysis: Scalable Vehicle Detection and Velocity Estimation Using PlanetScope Imagery

    Adamiak, Maciej / Grinblat, Yulia / Psotta, Julian et al. | ArXiv | 2024

    Free access

    Estimation of Collision Priority on Traffic Videos using Deep Learning

    Madhumitha, G. / Senthilnathan, R. / Ayaz, K. Muzammil et al. | IEEE | 2020