Sloshing phenomenon in spacecraft fuel tank during orbital maneuver, causes adverse effects on spacecraft attitude. Therefore, before orbital maneuvers, modeling fuel sloshing and determining appropriate method for controlling it has to be carried out. The aim of this paper is to model slosh dynamics by using double pendulum model in two-dimensional space. Spacecraft maneuver and pendulums motion are considered in 2D-coordinate, so coupled spacecraft and pendulums dynamic system are 5 degrees of freedom systems. Here, linear control methods (PD and LQR), and also nonlinear control methods (Lyapunov and fuzzy) are determined to stabilize dynamic parameters of the introduced system. Simulation results show that designed controllers have good performance to achieve stabilization of the parameters.


    Access

    Download


    Export, share and cite



    Title :

    Modeling and Control of Fuel Sloshing and its Effect on Spacecraft Attitude


    Contributors:
    M. Navabi (author) / A. Davodi (author)


    Publication date :

    2019



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Adaptive Nonlinear Dynamic Inversion for Spacecraft Attitude Control with Fuel Sloshing

    Weerdt, Elwin / Kampen, Erik-Jan / Gemert, Daan et al. | AIAA | 2008


    Adaptive Nonlinear Dynamic Inversion for Spacecraft Attitude Control with Fuel Sloshing

    Weerdt, E. / Kampen, E. / Gemert, D. et al. | British Library Conference Proceedings | 2008



    Attitude Motion of a Spinning Spacecraft with Fuel Sloshing and Nutation Damping

    Ayoubi, Mohammad A. / Goodarzi, Farhad A. / Banerjee, Arun | Springer Verlag | 2011


    Attitude Motion of a Spinning Spacecraft with Fuel Sloshing and Nutation Damping

    Ayoubi, Mohammad A. / Goodarzi, Farhad A. / Banerjee, Arun | Online Contents | 2011