Earthquake relief network involves storage and distribution of relief aid to people in need. In this paper, a new stochastic multi-objective mixed integer mathematical model is developed and implemented in Kadikoy municipality of Istanbul, Turkey in order to configure part of the earthquake relief network. The aim of the model is to help decision makers decide on the locations of storage areas for shelters pre-earthquake and distribution of shelters from these areas to temporary shelter areas post-earthquake while minimizing earthquake scenario-specific total expected distribution distance, total expected earthquake damage risk factor of storage areas and expected total penalty cost related to unsatisfied demand at temporary shelter areas, simultaneously. In the model, storage area capacity and coverage distance restrictions are taken into consideration. The data related to potential storage areas and shelter locations were obtained from Kadikoy municipality of Istanbul and Istanbul Metropolitan Municipality (IMM). The earthquake damage risk factors were determined based on possible earthquake scenarios given in Japan International Cooperation Agency’s (JICA) report. Four event scenarios with two different earthquake scenario likelihoods were considered and sample efficient solutions from the Pareto frontier were obtained implementing the normalized (scaled) weighted sum method.


    Access

    Download


    Export, share and cite



    Title :

    A Multi-Objective Stochastic Model for an Earthquake Relief Network


    Contributors:


    Publication date :

    2020




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown