A key issue to understand urban system is to characterize the activity dynamics in a city—when, where, what, and how activities happen in a city. To better understand the urban activity dynamics, city-wide and multiday activity participation sequence data, namely, activity chain as well as suitable spatiotemporal models, are needed. The commonly used household travel survey data in activity analysis suffers from limited sample size and temporal coverage. The emergence of large-scale spatiotemporal data in urban areas, such as mobile phone data, provides a new opportunity to infer urban activities and the underlying dynamics. However, the challenge is the absence of labeled activity information in mobile phone data. Consequently, how to fuse the useful information in household survey data and mobile phone data to build city-wide, multiday, and all-time activity chains becomes an important research question. Moreover, the multidimension structure of the activity data (e.g., location, start time, duration, type) makes the extraction of spatiotemporal activity patterns another difficult problem. In this study, the authors first introduce an activity chain inference model based on tensor decomposition to infer the missing activity labels in large-scale and multiday activity data, and then develop a spatiotemporal event clustering model based on DBSCAN, called STE-DBSCAN, to identify the spatiotemporal activity patterns. The proposed approaches achieved good accuracy and produced patterns with a high level of interpretability.


    Access

    Download


    Export, share and cite



    Title :

    Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics


    Contributors:
    Chao Yang (author) / Yuliang Zhang (author) / Xianyuan Zhan (author) / Satish V. Ukkusuri (author) / Yifan Chen (author)


    Publication date :

    2020




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Urban traffic model construction method fusing mobile phone signaling and travel survey data

    LIU JIANXUN / JI XIAOJIN / LEI MINGTAO et al. | European Patent Office | 2023

    Free access

    Deriving Travel Behavior Data of Urban Subway Passengers from Mobile Phone Network

    Hu, Yongkai / Yang, Binbin / Ji, Xiangfeng et al. | ASCE | 2014


    Analyzing Cell Phone Location Data for Urban Travel

    Çolak, Serdar | Online Contents | 2015


    Analyzing Cell Phone Location Data for Urban Travel

    Çolak, Serdar / Alexander, Lauren P. / Alvim, Bernardo G. et al. | Transportation Research Record | 2019


    Fusing GPS probe and mobile phone data for enhanced land-use detection

    Furno, Angelo / Faouzi, Nour-Eddin El / Fiore, Marco et al. | IEEE | 2017