In this study, nonlinear postbuckling analyses are performed using ABAQUS to derive the buckling knockdown factors (KDFs) for hemispherical foam core sandwich shells under external pressure. Two hemispherical foam core sandwich shells (dimple and flat models) with different inner sheet thicknesses are considered. The crushable foam modeling technique is used to represent the nonlinear compressive behavior of the foam material. The geometric initial imperfection modeling technique, the single dimple imperfection approach, is established to represent the geometric initial imperfection of the hemispherical foam core sandwich shells. The postbuckling analyses using the Riks method are carried out to predict the buckling behaviors of shells with geometric initial imperfections. The KDFs of the dimple and flat models are derived to be 0.20 and 0.22, respectively, which are up to 11.11% and 22.22% higher, respectively, than the previous NASA buckling design criteria. Therefore, the present KDFs provide a lightweight design for hemispherical foam core sandwich shells.


    Access

    Download


    Export, share and cite



    Title :

    Buckling Knockdown Factors for Hemispherical Foam Core Sandwich Shells With Single Dimple


    Contributors:


    Publication date :

    2024




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown