With the development of aerospace technology, protective materials for hot-end components have reached higher requirements. In this paper, a (ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O(x=0.2,0.544,0.672,0.796和0.92)quintuple element ceramic system composite is studied based on the solid-phase reaction method and molecular dynamics simulation. By experimental means, ZrO2 (99.99%), Y2O3 (99.99%), Ta2O5 (99.99%), Er2O3 (99.99%) and TiO2 (99%) powder was used as raw material to prepare (ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O composite by the solid-phase reaction method. The thermal conductivity of (ZrxY(1-x/4)Ta(1-x/4)Ti(1-x/4)Er(1-x/4))O ceramic material was investigated computationally using the LAMMPS program. The study result shows that a consistent trend in the variation of the thermal conductivity is obtained by experiments and simulations at the interval of 200-900 °C. The thermal conductivity reaches a minimum value at x = 0.796, which proves the feasibility of molecular dynamics simulation of the thermal conductivity of multi-ceramic materials. Meanwhile, the effect of porosity on thermal conductivity was investigated, and it is found that there was a competitive relationship between the elemental ratios and the effect of porosity on thermal conductivity. When the porosity is larger than 6.67%, the effect of the porosity is the main influencing factor. when the porosity is smaller than 6.67%, the elemental ratios are the dominant factors in the thermal conductivity.


    Access

    Download


    Export, share and cite



    Title :

    Effect of porosity on thermal conductivity of quintuple element ceramic system materials


    Contributors:
    CHEN Yuhui (author) / JIANG Pengyang (author) / ZHANG Ruolin (author) / SUN Jiaxiang (author) / ZHANG Baiqiang (author) / ZHANG Yonghai (author)


    Publication date :

    2023




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown