Several layers of defense can be implemented in a global navigation satellite system (GNSS) receiver to improve its performance in the presence of interference. These layers include the use of pre-correlation mitigation techniques, post-correlation quality indicators to screen measurements, and fault detection and exclusion (FDE) at the position solution level. This paper provides a characterization of the interactions between these layers of interference mitigation and a measurement quality check. Data collected in the presence of increasing levels of jamming were processed using different interference mitigation techniques, including robust interference mitigation (RIM) and the adaptive notch filter (ANF). A software defined radio (SDR) approach was adopted and measurements were generated by considering five interference-mitigation techniques. Position solutions were then computed using a forward-backward approach for receiver autonomous integrity monitoring (RAIM). Signals from GPS, Galileo, and Beidou were processed and both single and dual-constellation solutions were analyzed. The analysis revealed that interference mitigation allows the receiver to track a larger number of signals even in the presence of high levels of jamming power. This increased measurement availability was then effectively exploited by RAIM techniques to provide more reliable solutions. Measurements from several constellations further improved the reliable availability of the position solutions.


    Access

    Download


    Export, share and cite



    Title :

    Multi-layered Multi-Constellation Global Navigation Satellite System Interference Mitigation


    Contributors:
    Ciro Gioia (author) / Daniele Borio (author)


    Publication date :

    2023




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    China’s Navigation Satellite Constellation

    Chandrashekar, S. | Springer Verlag | 2022


    Navigation and Positioning with Multi-Constellation LEO Satellite Collaboration Signals

    Wang, Xinyang / Zhao, Yafei / Lin, Guangrong et al. | Springer Verlag | 2024


    TIMATION Navigation Satellite System Constellation Study

    J. A. Buisson / T. B. McCaskill | NTIS | 1972


    A New Approach of Satellite Selection for Multi-constellation Integrated Navigation System

    Li, Guangcai / Wu, Jiangfei / Liu, Weihua et al. | British Library Conference Proceedings | 2016


    Optical Navigation Satellite Constellation Design

    Ao, Jun ;Wu, Yi ;Ma, Chun Bo | Trans Tech Publications | 2012