Unmanned Aerial Vehicles (UAVs) have become increasingly important in various applications, including environmental monitoring, disaster response, and surveillance, due to their flexibility, efficiency, and ability to access hard-to-reach areas. Effective path planning for multiple UAVs exploring a target area is crucial for maximizing coverage and operational efficiency. This study presents a novel approach to optimizing collaborative navigation for UAVs using multi-agent reinforcement learning (MARL). To enhance the efficiency of this process, we introduce the Adaptive Dimensionality Reduction (ADR) framework, which includes Autoencoders (AEs) and Principal Component Analysis (PCA) for dimensionality reduction and feature extraction. The ADR framework significantly reduces computational complexity by simplifying high-dimensional state spaces while preserving crucial information. Additionally, we incorporate communication modules to facilitate inter-UAV coordination, further improving path planning efficiency. Our experimental results demonstrate that the proposed approach significantly enhances exploration performance and reduces computational complexity, showcasing the potential of combining MARL with ADR techniques for advanced UAV navigation in complex environments.
Enhancing Unmanned Aerial Vehicle Path Planning in Multi-Agent Reinforcement Learning through Adaptive Dimensionality Reduction
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Unmanned Aerial Vehicles Path Planning Based on Deep Reinforcement Learning
Springer Verlag | 2019
|