Vehicle trajectory data have become essential for many research fields, such as traffic flow, traffic safety, and automated driving. To make trajectory data useable for researchers, an overview of the included road section and traffic situation as well as a description of the data processing methodology is necessary. In this paper, we present a trajectory dataset from a German highway with two lanes per direction, an off-ramp and congested traffic in one direction, and an on-ramp in the other direction. The dataset contains 8,648 trajectories and covers 87 ​min and an ∼1,200 ​m long section of the road. The trajectories were extracted from drone videos using a posttrained YOLOv5 object detection model and projected onto the road surface via three-dimensional (3D) camera calibration. The postprocessing methodology can compensate for most false detections and yield accurate speeds and accelerations. The trajectory data are also compared with induction loop data and vehicle-based smartphone sensor data to evaluate the plausibility and quality of the trajectory data. The deviations of the speeds and accelerations are estimated at 0.45 ​m/s and 0.3 ​m/s2, respectively. We also present some applications of the data, including traffic flow analysis and accident risk analysis.


    Access

    Download


    Export, share and cite



    Title :

    Vehicle trajectory dataset from drone videos including off-ramp and congested traffic – Analysis of data quality, traffic flow, and accident risk


    Contributors:


    Publication date :

    2024




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown