Abstract Background The availability of private vehicles with autonomous features is widespread nowadays. Various car manufacturers are providing attributes like collision warning, city automatic emergency braking, adaptive cruise control, pedestrian detection, lane-keeping assistance and lane departure warning, rear cross-traffic and blind-spot warning in their high-end models. Purpose Such features can automatically manage the macroscopic fundamental traffic parameters such as speed, headway, etc adaptively. Consequently leading to a heterogeneous traffic stream with diverse car-following behaviour comprising completely manual/traditional (TVs) and autonomous vehicles (AVs). This questions the applicability of classic traffic flow theory relationships on such heterogeneous traffic streams. Methodology This paper focuses on developing the macroscopic fundamental diagram for such heterogeneous traffic streams based on the quantified penetration rate (QPR) for autonomous vehicles. The penetration rate is devised by taking into account user demographics, land usage and road network properties. QPR is used as an input for heterogeneous urban traffic stream scenarios to calculate the aggregated urban traffic network dynamics of flow and density for the same network. Travel time versus flow characteristics is evaluated based on calibrated hyperbolic urban link travel time function for both interrupted and uninterrupted flows following the aggregated speed and density output from MFDs for heterogeneous traffic streams. Also, two scenarios are generated for comparison to explain the improvement in the network characteristics together with a sensitivity analysis. Results Compared to the base scenario there could be 25-35% of AVs on the road networks based on the analysis in coming fifteen years. This increment in usage impacts the capacity of road networks positively by increasing it up to 59%. Conclusions Results obtained after the application of the suggested model approach to the real network can be used to define a realistic method for multi-vehicle equilibrium assignment models for heterogeneous traffic streams including autonomous vehicles instead of approximating the penetration rates.


    Access

    Download


    Export, share and cite



    Title :

    Evaluation of macroscopic fundamental diagram characteristics for a quantified penetration rate of autonomous vehicles


    Contributors:


    Publication date :

    2023




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    EVALUATION OF MACROSCOPIC FUNDAMENTAL DIAGRAM TRANSITION IN THE ERA OF CONNECTED AND AUTONOMOUS VEHICLES

    Halakoo, Mohammad / Yang, Hao | British Library Conference Proceedings | 2021




    Macroscopic Fundamental Diagram for Brisbane, Australia

    Tsubota, Takahiro / Bhaskar, Ashish / Chung, Edward | Transportation Research Record | 2014