This study explores the associations between crash/near-crash (C/NC) events and roadway, driver-related, and environmental factors in naturalistic driving studies (NDS). We used the Naturalistic Engagement in Secondary Tasks (NEST) dataset, which is massive and detailed and contains 50 million miles of naturalistic driving data resulting from the Strategic Highway Research Program 2 (SHRP2). Association rule mining (ARM) is applied to extract the rules for frequently occurring events. The generated association rules are filtered by four metrics (support, confidence, lift, and conviction) and validated by the lift increase criterion. A three-step analysis is performed to obtain a comprehensive understanding of the rules of C/NC events. The 20 most frequent items are first selected to investigate their relationship with the C/NC events. Subsequently, the association rules are used to identify the factors contributing to C/NC events. Finally, correlations between contributing factors and different severities of crashes (I—most severe, II—police-reportable, III—minor crash, and IV—low-risk tire strike) are analyzed by ARM. The results demonstrate that C/NC events occur most frequently on straight and level road segments with no controlled intersections or traffic control devices when drivers are performing secondary tasks. Thus, the reasons for these crashes are carelessness and overconfidence. In addition, a median strip or barrier and a wider road can significantly reduce the frequency and severity of crash events. Moreover, gender, age, average annual mileage, and secondary tasks are highly correlated with the frequency and severity of C/NC events. Drivers with visual-spatial disabilities or crash records are more likely to be involved in the most severe crash events. Near-crash events occur more frequently at higher traffic density and on roads with traffic control devices and controlled intersections. These conditions may keep drivers alert, preventing crashes.
Crash/Near-Crash Analysis of Naturalistic Driving Data Using Association Rule Mining
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Near Crashes as Crash Surrogate for Naturalistic Driving Studies
Transportation Research Record | 2010
|Near Crashes as Crash Surrogate for Naturalistic Driving Studies
Online Contents | 2010
|Defining and screening crash surrogate events using naturalistic driving data
Online Contents | 2013
|Crash Heterogeneity: Implications for Naturalistic Driving Studies and for Understanding Crash Risks
Transportation Research Record | 2017
|