This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error) and response time (t). The highest R-value was obtained for the multi-layer perceptron (0.89), demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second), 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.


    Access

    Download


    Export, share and cite



    Title :

    Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron


    Contributors:


    Publication date :

    2012




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Non-linear point distribution modelling using a multi-layer perceptron

    Sozou, P. D. / Cootes, T. F. / Taylor, C. J. et al. | British Library Online Contents | 1997


    TSDCN: Traffic safety state deep clustering network for real‐time traffic crash‐prediction

    Li, Haitao / Bai, Qiaowen / Zhao, Yonghua et al. | Wiley | 2021

    Free access

    TSDCN: Traffic safety state deep clustering network for real‐time traffic crash‐prediction

    Haitao Li / Qiaowen Bai / Yonghua Zhao et al. | DOAJ | 2021

    Free access

    Traffic Crash Modelling on Urban Arterial

    Radwan, A. E. / Mostofa, H. / Abdel-Aty, M. et al. | British Library Conference Proceedings | 1998


    Examining imbalanced classification algorithms in predicting real-time traffic crash risk

    Peng, Yichuan / Li, Chongyi / Wang, Ke et al. | Elsevier | 2020