On the path toward fully autonomous sea vessels, forecasting a ship’s exact velocity and position during its route plays a crucial role in dynamic positioning, target tracking, and autopilot operations of the unmanned body navigating toward predetermined locations. This paper addresses the prediction of the operational performance of a free-running submarine advancing in a straight route (in surge motion). Along with the forward advancing vessel (straight-ahead motion) the study covers all possible scenarios of ship’s surge, including crash-ahead, crash-back, and astern motions. Conventional maneuvering models cannot handle motions other than forward advancement due to the absence of propeller data in all four quadrants of hydrodynamic performance map. This study proposes an approach for predicting submarine performance in all these surge conditions by utilizing four-quadrant propeller performance and resistance test data. We developed an in-house code, SMot4QP, to simulate ship speed and position in the time domain. We obtained satisfying results for the straight-ahead and crash-ahead motions, while the crash-back and astern maneuvers require further refinement due to propeller wake interaction with the hull. The proposed method is capable of predicting the motions of all types of vessels using the ship’s resistance and four-quadrant propeller test results. Thus, SMot4QP offers a fast and robust alternative to computationally expensive free-running self-propulsion simulations for operational performance prediction in broader naval applications.


    Access

    Download


    Export, share and cite



    Title :

    Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions


    Contributors:


    Publication date :

    2024




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    The Hydrodynamic Performance Prediction of Ship Hull with Propeller

    Shen, Hai Long ;Abdelhak, Gomri ;Chen, Qing Tong | Trans Tech Publications | 2011


    Nonlinear Model Identification of a Marine Propeller over Four-Quadrant Operations

    Pivano, L. / Fossen, T. I. / Johansen, T. A. et al. | British Library Conference Proceedings | 2006


    Micro-grid structure for improving hydrodynamic performance of propeller

    LIU PENG / ZOU KANG / LIU YANGHAO et al. | European Patent Office | 2023

    Free access

    Pod propeller fin structure capable of improving hydrodynamic performance

    SHU YONGDONG / DU PENG / XIE TANGHAI et al. | European Patent Office | 2020

    Free access

    SHIP PROPELLER MOUNTING BRACKET, SHIP PROPELLER AND SHIP

    WANG QIANG / TAO SHIZHENG / WAN XIAOKANG | European Patent Office | 2023

    Free access