Object detection algorithms for open water aerial images present challenges such as small object size, unsatisfactory detection accuracy, numerous network parameters, and enormous computational demands. Current detection algorithms struggle to meet the accuracy and speed requirements while being deployable on small mobile devices. This paper proposes DFLM-YOLO, a lightweight small-object detection network based on the YOLOv8 algorithm with multiscale feature fusion. Firstly, to solve the class imbalance problem of the SeaDroneSee dataset, we propose a data augmentation algorithm called Small Object Multiplication (SOM). SOM enhances dataset balance by increasing the number of objects in specific categories, thereby improving model accuracy and generalization capabilities. Secondly, we optimize the backbone network structure by implementing Depthwise Separable Convolution (DSConv) and the newly designed FasterBlock-CGLU-C2f (FC-C2f), which reduces the model’s parameters and inference time. Finally, we design the Lightweight Multiscale Feature Fusion Network (LMFN) to address the challenges of multiscale variations by gradually fusing the four feature layers extracted from the backbone network in three stages. In addition, LMFN incorporates the Dilated Re-param Block structure to increase the effective receptive field and improve the model’s classification ability and detection accuracy. The experimental results on the SeaDroneSee dataset indicate that DFLM-YOLO improves the mean average precision (mAP) by 12.4% compared to the original YOLOv8s, while reducing parameters by 67.2%. This achievement provides a new solution for Unmanned Aerial Vehicles (UAVs) to conduct object detection missions in open water efficiently.


    Access

    Download


    Export, share and cite



    Title :

    DFLM-YOLO: A Lightweight YOLO Model with Multiscale Feature Fusion Capabilities for Open Water Aerial Imagery


    Contributors:
    Chen Sun (author) / Yihong Zhang (author) / Shuai Ma (author)


    Publication date :

    2024




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    Workflow for Landmine Detection in Aerial Imagery with YOLO-based Deep Learning

    Stankevich, S.A. / Golubov, S.I. / Dugin, S.S. et al. | IEEE | 2024




    Lightweight ship detection method based on YOLO-FNC model

    Bingyan ZHANG / Chuang ZHANG / Zhennan SHI et al. | DOAJ | 2024

    Free access