Zahlreiche moderne Lösungen im Bereich Autonomes Fahren greifen auf hochpräzises Kartenmaterial zurück. Neben anderen Informationen muss das Kartenmaterial solche über Verkehrsregeln enthalten. In dieser Arbeit wird eine Offline-Lösung für die Inferenz von Verkehrsregeln an Deutschen Kreuzungen entwickelt. Mithilfe dieser Lösung werden für jeden Fahrstreifen einer Kreuzung Klassifikationsentscheidungen für jede mögliche Zielrichtung, welche von diesem Fahrstreifen aus erreichbar ist, getroffen. Verkehrsregeln werden mithilfe von Hidden-Markov-Models repräsentiert und, basierend auf errechneten Likelihood-Werten, bestimmt. Die Modelle werden mithilfe künstlich erzeugter Trajektorien von Kreuzungsüberquerungen parametrisiert und evaluiert. Unter realen Umständen würden solche Daten opportunistisch und sensorgestützt von einer Fahrzeugflotte über einen längeren Zeitraum hinweg gesammelt werden. In einer Reihe von Experimenten wird eine geeignete Trajektorienrepräsentation festgelegt und der Klassifikationsansatz getestet und verfeinert. Die Klassifikationsperformanz des Ansatzes wird mithilfe eines Kreuzvalidierungsverfahren bestimmt. Mittlere F$_1$-Scores zur Quantifizierung der besten Ergebnisse unter den erzielten Testergebnissen variieren zwischen 0.809 und 0.832. Bezüglich der Verkehrsregeln, welche mithilfe von Vorfahrts- und Stoppschildern, sowie Lichtsignalanlagen kommuniziert werden, werden hohe Klassifikationsleistungen erreicht. Allerdings bestehen Schwierigkeiten bei der Klassifikation im Zusammenhang mit den Verkehrsregeln Vorfahrt achten und Rechts vor Links. Da die initial erzielten Ergebnisse vielversprechend sind, wird empfohlen diesen Ansatz in zukünftigen Arbeiten weiterzuentwickeln und zu verbessern.
Inference of Traffic Regulations at Intersections Based on Trajectory Data
2020
Miscellaneous
Electronic Resource
English
Examining causal factors of traffic conflicts at intersections using vehicle trajectory data
Elsevier | 2025
|Examining causal factors of traffic conflicts at intersections using vehicle trajectory data
DOAJ | 2025
|Vehicle trajectory reconstruction for signalized intersections using mobile traffic sensors
Online Contents | 2013
|