Technologische Verbesserungen erhöhen den Automatisierungsgrad von Fahrzeugen. Der natürliche Schritt ist dabei, den Fahrer dort zu unterstützen, wo er es am meisten wünscht: bei schlechtem Wetter. Das Wetter beeinflusst alle Sensoren, die zur Wahrnehmung der Umgebung verwendet werden, daher ist es entscheidend, diese Effekte zu berücksichtigen und abzuschwächen. Die vorliegende Dissertation konzentriert sich auf die gerade entstehende Technologie der automobilen Light Detection and Ranging (LiDAR)-Sensoren und trägt zur Entwicklung von autonomen Fahrzeugen bei, die in der Lage sind, unter verschiedenen Wetterbedingungen zu fahren. Die Grundlage ist der erste LiDAR-Punktwolken-Datensatz mit dem Schwerpunkt auf schlechte Wetterbedingungen, welcher punktweise annonatatierte Wetterinformationen enthält, während er unter kontrollierten Wetterbedingungen aufgezeichnet wurde. Dieser Datensatz wird durch eine neuartige Wetter-Augmentation erweitert, um realistische Wettereffekte erzeugen zu können. Ein neuartiger Ansatz zur Klassifizierung des Wetterzustands und der erste CNN-basierte Entrauschungsalgorithmus werden entwickelt. Das Ergebnis ist eine genaue Vorhersage des Wetterstatus und eine Verbesserung der Punktwolkenqualität. Kontrollierte Umgebungen unter verschiedenen Wetterbedingungen ermöglichen die Evaluierung der oben genannten Ansätze und liefern wertvolle Informationen für das automatisierte und autonome Fahren.


    Access

    Download

    Check availability in my library


    Export, share and cite



    Title :

    LiDAR-based Weather Detection: Automotive LiDAR Sensors in Adverse Weather Conditions


    Contributors:

    Publication date :

    2022



    Type of media :

    Miscellaneous


    Type of material :

    Electronic Resource


    Language :

    English




    Weather Influence and Classification with Automotive Lidar Sensors

    Heinzler, Robin / Schindler, Philipp / Seekircher, Jurgen et al. | IEEE | 2019


    Survey on LiDAR Perception in Adverse Weather Conditions

    Dreissig, Mariella / Scheuble, Dominik / Piewak, Florian et al. | IEEE | 2023


    WEATHER INFLUENCE AND CLASSIFICATION WITH AUTOMOTIVE LIDAR SENSORS

    Heinzler, Robin / Schindler, Philipp / Seekircher, Jürgen et al. | British Library Conference Proceedings | 2019



    Automotive LIDAR sensor development scenarios for harsh weather conditions

    Kutila, Matti / Pyykonen, Pasi / Ritter, Werner et al. | IEEE | 2016