Trans Sarbagita is a public transportation services people at Denpasar, Badung, Gianyar and Tabanan. Trans Sarbagita is aimed to resolve a problems caused by accretion volume of vehicles in Bali. This study conducted to forecast the number of Trans Sarbagita passengers in 2013 using ANFIS. The ANFIS system composed by five layers where each layers has a different function and its divide in two phases, i.e. forward and backward phases. The ANFIS uses a hybrid learning algorithm which is a combination of Least Squares Estimator (LSE) on forwards phases and Error Backpropagation (EBP) on the backward phases. The results show, ANFIS with six inputs with M.F of Pi produces smallest error, compared to seven and eight input and M.F gauss and generalizedbell. Forecast of Trans Sarbagita passenger numbers in 2013 have to fluctuated every day and the average of passenger’s Trans Sarbagita for a day is 1627 passengers with MSE equal to 10210 and MAPE is 4.01%.


    Access

    Download


    Export, share and cite



    Title :

    PREDIKSI PENGGUNA BUS TRANS SARBAGITA DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM



    Publication date :

    2013-08-30


    Remarks:

    E-Jurnal Matematika; Vol 2 No 3 (2013); 46 - 52 ; 2303-1751 ; 10.24843/MTK.2013.v02.i03



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    PENENTUAN PREDIKSI STOK MOBIL DENGAN PENDEKATAN KEPUASAN PELANGGAN MENGGUNAKAN METODE MOORA

    Henny Indriyawati / Saifur Rohman Cholil / Victor Gayuh Utomo | DOAJ | 2018

    Free access


    Sistem Prediksi Jumlah Produksi Tahu Takwa Menggunakan Metode Fuzzy Tsukamoto Berbasis Web

    Bagus Dwi Prasetya / Syaputri, Rika Wahyu / Annisa, Fera et al. | BASE | 2023

    Free access


    IMPLEMENTASI MODEL FUZZY-WAVELET DAN FIS METODE MAMDANI DALAM PREDIKSI NILAI TUKAR EUR/IDR

    Kharomah, Siti Ismiatul / Rosyida, Isnaini / Mastur, Zaenuri | BASE | 2019

    Free access