This paper deals with modeling of complex microgrids and the design of advanced control strategies of sliding mode type to control them in a decentralized way. More specifically, the model of a microgrid including several distributed generation units (DGUs), connected according to an arbitrary complex and meshed topology, and working in islanded operation mode, is proposed. Moreover, it takes into account all the connection line parameters and it is affected by unknown load dynamics, nonlinearities and unavoidable modeling uncertainties, which make sliding mode control algorithms suitable to solve the considered control problem. Then, a decentralized second-order sliding mode control scheme, based on the suboptimal algorithm is designed for each DGU. The overall control scheme is theoretically analyzed, proving the asymptotic stability of the whole microgrid system. Simulation results confirm the effectiveness of the proposed control approach.


    Access

    Download


    Export, share and cite



    Title :

    Decentralized Sliding Mode Control of Islanded AC Microgrids with Arbitrary Topology



    Publication date :

    2017-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Decentralized sliding mode control of islanded AC microgrids with arbitrary topology

    Cucuzzella, Michele / Incremona, Gian Paolo / Ferrara, Antonella | BASE | 2017

    Free access

    Decentralized Virtual Impedance-based Circulating Current Suppression Control for Islanded Microgrids

    Abu Bakar, A. / Pathan, E. / Khan, M. H. et al. | BASE | 2021

    Free access


    OSCILLATOR-BASED INVERTER CONTROL FOR ISLANDED THREE-PHASE MICROGRIDS

    Johnson, Brian B. / Dhople, Sairaj V. / Cale, James L. et al. | TIBKAT | 2013